Glued laminated timber

Glued laminated timber, also called glulam, is a type of structural engineered wood product comprising a number of layers of dimensional lumber bonded together with durable, moisture-resistant structural adhesives. In North America, the material providing the laminations is termed laminating stock or lamstock.

Technological developments
Resin glues
When glued laminated timber was introduced to the building technology in the early twentieth century, casein glues, which are waterproof but have low shear strengths, were widely used. Joints with casein glues had detachment failures due to inherent stresses in the wood. The invention of cold-curing synthetic resin glues in 1928 (“Kaurit”) solved these problems – resin glues, which are inexpensive and easy to use, are waterproof and enable high adhesive strength. The development of resin glues contributed to the wide use of glued laminated timber construction.

Finger joints
The use of finger joints with glulam allowed for production of glulam beams and columns on large scale. Glulam finger joints were developed to provide broad surface area for gluing. Automatic finger-jointing machines help cut the finger joints, connect and glue them together under pressure, allowing for a strong, durable joint, capable of carrying high loads comparable to natural wood with the same cross-section.

Computer numerical control
Computer-controlled fabrication (CNC) allows architects and designers to cut glued laminated timber into unusual shapes with a high degree of precision. CNC machine tools can utilize up to five axes, which enables undercutting and hollowing-out processes. The cost-effective CNC machines carve the material using mechanical tools, like a router.

Use
Sports structures

Richmond Olympic Oval
Sports structures are a particularly suitable application for wide-span glulam roofs. This is supported by the light weight of the material, combined with the ability to furnish long lengths and large cross-sections. Prefabrication is invariably employed, and the structural engineer needs to develop clear method statements for delivery and erection at an early stage in the design. The PostFinance Arena is an example of a wide-span sports stadium roof using glulam arches reaching up to 85 metres. The structure was built in Bern in 1967, and has subsequently been refurbished and extended. Eastern Kentucky University’s Alumni Coliseum was built in 1963 with the world’s largest glued laminated arches, which span 308 feet, 3 1/2 inches.

The roof of the Richmond Olympic Oval, built for speed skating events at the 2010 Winter Olympic Games in Vancouver, British Columbia, features one of the world’s largest clearspan wooden structures. The roof includes 2,400 cubic metres of Douglas fir lamstock lumber in glulam beams. A total of 34 yellow-cedar glulam posts support the overhangs where the roof extends beyond the walls.

Anaheim ICE, located in Anaheim, California, is also an example of using glued laminated timber. Disney Development Company desired to build an aesthetic ice rink with less cost, and glulam was one of the most qualified materials in order to meet the owner’s requirement. Architect Frank Gehry suggested a design with large double-curved Yellow pine glulam beams, and the ice rink was constructed in 1995.

Bridges

Heavy-traffic Accoya Glulam Bridge at Sneek, The Netherlands

Glulam bridge crossing Montmorency River, Quebec
Pressure-treated glulam timbers or timbers manufactured from naturally durable wood species are well suited for creating bridges and waterfront structures. Wood’s ability to absorb impact forces created by traffic and its natural resistance to chemicals, such as those used for de-icing roadways, make it ideal for these installations. Glulam has been successfully used for pedestrian, forest, highway, and railway bridges. An example in North America of a glulam bridge is at Keystone Wye, South Dakota, constructed in 1967. The da Vinci Bridge in Norway, completed in 2001, is almost completely constructed with glulam.

The Kingsway Pedestrian Bridge in Burnaby, British Columbia, Canada, is constructed of cast-in-place concrete for the support piers, structural steel and glulam for the arch, a post tensioned precast concrete walking deck, and stainless steel support rods connecting the arch to the walking deck.

Religious buildings

The interior of the Cathedral of Christ the Light formed with glued laminated timber
Glulam is used for the construction of multi-use facilities such as churches, school buildings, and libraries, and the Cathedral of Christ the Light in Oakland, California, is one of the examples of a way to enhance the ecological and aesthetic effect. It was built as the replacement of the Cathedral of St. Francis de Sales, which became unusable because of the Loma Prieta earthquake in 1989. The 21,600-square-feet wide and 110-foot high Vesica Pisces-shaped building formed the frame with a glued-laminated timber beam and steel-rod skeleton covered with a glass skin. Considering the conventional way of construction with steel or reinforced concrete moment-frame, this glulam-and-steel combination case is regarded as an advanced way to realize the economy and aesthetic in the construction.

Other
The world’s tallest glulam structure has been built in Brumunddal, Ringsaker, Hedmark, Norway, it is an 18 story building.

Glulam timber is a important component in hurricane-proof building systems. Category 5 hurricane-resistant log houses are built of glulam timber

SPECIAL THANKS TO THE ORIGINAL SOURCE OF https://en.wikipedia.org/wiki/Glued_laminated_timber

如无特殊说明,文章均为本站原创,转载请注明出处。If there are no special instructions, the articles are original, if you want to use or reproduce, please indicate the original source www.plywoodinspection.com,If you find that our article infringes on your rights and interests, please email us in time and we will delete it at the first time.

Check Also

Manufacturing process of Glulam

Glulam is a relatively new product manufactured in Indonesia. There are few companies producing Glulam …

Leave a Reply

Your email address will not be published. Required fields are marked *